...

7. Appendices U n i

by user

on
Category: Documents
1

views

Report

Comments

Transcript

7. Appendices U n i
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix A
7.
7-1
Appendices
7.1.
Appendix A
7.1.1. Processing temperatures for commercial polymers
Polymer
Poly(vinyl chloride) [PVC]
Polyoxymethylene [POM]
Polyurethane [PUR]
Polystyrene [PS]
Polyamide 11 [Nylon 11; PA 11]
Polyamide 12 [Nylon 12; PA 12]
Poly(methyl methacrylate) [PMMA]
Acrylonitrile-Butadiene-Styrene [ABS]
Polyethylene [PE]
Polyamide 6 [Nylon 6; PA 6]
Polyamide 6,10 [Nylon 6,10; PA 6,10]
Polypropylene [PP]
Poly(butylene terephthalate) [PBT]
Styrene-Acrylonitrile [SAN]
Poly(ethylene terephthalate) [PET]
Polyamide 6,6 [Nylon 6,6; PA 6,6]
Polycarbonate [PC]
Polyphenylene oxides [PPO]
Polysulphone [PSU]
Perfluoro(ethylene/propylene) [FEP]
Poly(phenylene sulphide) [PPS]
Polyethersulphone [PES]
Poly(amide imide) [PAI]
Poly(ester imide) [PEI]
Poly(ether ether ketone) [PEEK]
Liquid crystal polymers [LCP]
Units
“Melt”
Processing
Mould
Temperature Temperature Temperature
100
180
160
100
175
175
100
110
140
220
215
170
225
115
225
255
150
120
200
275
290
230
300
215
335
330
°C
195
200
205
225
230
230
245
250
250
250
250
255
255
255
280
285
300
300
315
315
330
350
365
370
370
400
°C
35
100
35
45
60
60
70
75
25
90
90
35
35
80
140
90
90
80
150
150
110
150
230
100
160
175
°C
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix B
7.2.
7-2
Appendix B
7.2.1. Limiting Oxygen Index for commercial polymers
(Van Krevelen, 1990; Lyons, 1987; Hirschler, 2000)
Polymer
Polyformaldehyde
Poly(ethylene oxide) [PEO]
Polyoxymethylene [POM]
Polyacetal
Kitchen candle
Poly(methyl methacrylate) [PMMA]
Styrene-Acrylonitrile [SAN]
Acrylonitrile-Butadiene-Styrene [ABS]
Polyacrylonitrile [PAN]
Polyethylene [PE]
Polypropylene [PP]
Polystyrene [PS]
Polyisoprene
Polybutadiene
Cellulose
Cotton
Poly(ethylene terephthalate) [PET]
Air
Poly(vinyl alcohol) [PVA]
Polyamide 6,6 [Nylon 6,6]
Penton ®
Wool
Polyamide 6 [Nylon 6]
Polycarbonate [PC]
Nomex ®
Polyphenylene oxides [PPO]
Polysulphone
Silicone rubber
Phenol-formaldehyde resin
Polyether-ether ketone
Neoprene ®
Polybenzimidazole
Poly(vinyl chloride) [PVC]
Poly(vinylidene fluoride)
Polyphenylene sulphide
Poly(vinylidene chloride)
Carbon
Poly(tetrafluoroethylene) [PTFE, Teflon®]
LOI
0.15
0.15
0.15
0.16
0.16
0.17
0.18
0.18
0.18
0.18
0.18
0.19
0.19
0.19
0.19
0.20
0.21
0.21
0.22
0.23
0.23
0.25
0.26
0.27
0.29
0.29
0.30
0.32
0.35
0.35
0.40
0.42
0.42
0.44
0.44
0.60
0.60
0.95
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix C
7.3.
7-3
Appendix C
7.3.1. List and structure of acids (and complexes) used
Hydroxyl
groups
Acid
groups
Carbons
α-Fufoic acid = 2-Furan carboxylic acid
1
5
2-Ketoglutaric acid
2
5
1
7
2 x NH2
1
6
Pyridine
1
11
2
6
1
8
Aspartic acid
2
4
Azelaic acid
Barbital = Barbitone =
5,5-Diethylbarbituric acid
Benzoic acid
2
9
Compound
Aromatic
Other
Acids
3,5-Diaminobenzoic acid
*
3-Picolinic acid = Nicotinic acid
4-t-Butylbenzoic acid
*
Adipic acid
Anisic acid = Methoxybenzoic acid
*
NH2
8
1
7
Butyric acid
1
4
Citric acid
3
6
1
1
9
1
3
3
Coumaric acid = 2-Hydroxycinnamic acid
*
2 x NH
*
Cyanuric acid = i-Cyanuric acid
Decanoic acid = Capric acid
1
10
Formic acid
1
1
Galacturonic acid
1
6
4
1
7
3
Gluconic acid
1
6
5
Glutaric acid
2
5
Glycine = Glycocoll = Aminoacetic acid
1
2
Glycolic acid
Glycolic acid ethyl ether =
Ethoxyacetic acid
Heptanoic acid = Enanthic acid
1
2
1
4
1
7
Hexanoic acid = Caproic acid
1
6
2
9
1
4
2
8
Lauric acid
1
12
Levukinic acid
1
5
Maleic acid
2
4
Malic acid
2
4
Malonic acid
2
3
1
8
Gallic acid
Homophthalic acid
*
*
i-Butyric acid
i-Phthalic acid
Mandelic acid
*
*
3 x N in ring
NH2
1
1
1
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix C
Compound
Aromatic
Mucic acid = Galactaric acid
Acid
groups
2
Carbons
6
Hydroxyl
groups
4
7-4
Other
Myristic acid
1
14
Nitrillo triacetic acid
3
6
Nonanoic acid = Pelargonic acid
1
9
Octanoic acid = Caprylic acid
1
8
Oxalic acid
2
2
Palmitic acid
1
16
*
1
8
*
2
8
*
2
8
Phytic acid
12
6
6 x H2PO4-
Pyrazinecarboxylic acid
1
5
Pyrazine
Phenylacetic acid
Phthalic acid =
1,2-Benzene dicarboxylic acid
Phthalic anhydride
Pyrogallic acid = Pyrogallol
Pyromellitic acid =
1,2,4,5-Benzene tertacarboxylic acid
Sebacic acid = Decanedioic acid
*
*
6
4
10
2
10
Sorbic acid
1
6
Stearic acid
1
18
Succinic acid
2
4
Tartaric acid
2
4
Tiglic acid
Trimesic acid =
1,3,5-Benzene tricarboxylic acid
Undecylenic acid
1
5
3
9
1
11
*
Uric acid
N
3
2
5
4 x NH
Sodium complexes
di-Sodium fumarate
2
4
di-Sodium oxalate
2
2
di-Sodium tartrate
2
4
1
9
Phytic acid deodeca sodium salt
12
6
Pyruvic acid sodium salt
1
3
Sodium cyclamate
1
6
Sodium glycolate
1
2
1
24
3
6
Phenylpyruvic acid sodium salt
Sodium tetraphenyl borate
tri-Sodium citrate
*
*
2
6 x H2PO4NHSO31
B
1
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix C
O
O
OH
O
O
O
H2N
OH
O
2-Ketoglutaric acid
HO
α-Furoic acid
7-5
O
OH
OH
NH2
4-t-Butylbenzoic acid
3,5-Diaminobenzoic acid
O
O
HO
O
Adipic acid O
HN
O
HO
OH
O
OH
Citric acid
HO
O
OH
i-Butyric acid
O
N
OH
Cyanuric acid
Coumaric acid
O
Decanoic acid
HO
OH
HO
OH
Formic acid
OH
OH
N
N
OH
O
O
OH
n-Butyric acid
Benzoic acid
OH
Azelaic acid
O
O
O
Barbital
HO
O
Aspartic acid
O
O
OH
HO
NH
HO
O
HO
Anisic acid
O
O
NH2
O
OH
OH
HO
O
OH
HO
OH
OH
O
OH
Gallic acid
Galacturonic acid
O
OH OH
O
HO
OH
HO
OH OH OH
Gluconic acid
O
O
O
H2N
O
Glycolic acid ethyl ether
OH
Glycine
Glutaric
OH
O
O
O
OH
Heptanoic acid
OH
HO
Glycolic acid
OH
Hexanoic acid
OH
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix C
7-6
OH
O
OH
OH
OH
Lauric acid
O
O
O
O
OH
HO
O
Maleic acid
O
Levulinic acid
Homophthalic acid
O
HO
O
OH
OH
O
O
OH
HO
Malonic acid
O
Malic acid
O
Myristic acid
O
OH OH
OH
HO
O
Mucic acid
Mandelic acid
O
O
OH
R
O
O
OH
Phenylacetic acid
O
Phthalic acid
i-Phthalic acid
OH
OH
N
Picolinic acid
R
R
R
R
R
O
OH
OH
OH
O
Palmitic acid
OH
Octanoic acid
O
O
HO
Pelargonic acid
O
OH
N
O
O
Nitrillo triacetic acid
OH OH O
O
OH
HO
OH
HO
OH
OH
O P O
OH
R
Phytic acid
O
O
O
Phthalic anhydride
N
OH
N
O
Pyrazinecarboxylic acid
OH
OH
OH
HO
HO
OH
Oxalic acid
OH
O
O
O
HO
O
O
O
Pyromellitic acid
Sebacic acid
O
OH
HO
OH
OH
Sorbic acid
Pyrogallic acid
O
HO
O
O
OH
Stearic acid
O
O
OH
Tiglic acid
O
HO
OH
OH
OH
HO
O
O
Succinic acid
Tartaric acid
OH
O
HO
OH
Trimesic acid
HN
O
O
Undecylenic acid
OH
O
H
N
N N
H H
Uric acid
O
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix C
Na
+
O
O Na
B
+
O
O
O
pyruvic acid sodium salt
sodium tetraphenyl borate
O
O Na
+
Na O
Na O
+
di-sodium oxalate
+
+
Na
O
+
O
S
N
H
O
HO
O
O
O Na
OH
tri-sodium citrate
Na O
+
sodium cyclamate
di-sodium fumarate
Na O
O
O Na
phenylpyruvic acid sodium salt
O
O
O
+
O Na
+
O
7-7
O Na
sodium glycolate
+
O
+
HO
O Na
O Na
HO
+
+
O
di-sodium tartrate
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix D
7.4.
7-8
Appendix D
7.4.1. Acetylacetonate complexes used
O
O
3+
Al
O
O
3
Aluminium acetylacetonate
O
O
2
Calcium acetylacetonate
O
2+
Cu
O
3+
3
Iron (III) acetylacetonate
O
2+
Mg .2H2 O
TiO
+
Na .H2 O
O
2
Magnesium acetylacetonate
O
Fe
x calculated as 0.7
O
2
Copper (II) acetylacetonate
O
2+
Ca .xH2 O
Sodium acetylacetonate
O
2+
O
VO
2+
O
2
Titanyl acetylacetonate
2
Vanadyl acetylacetonate
O
4+
Zr
O
4
Zirconium acetylacetonate
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix E
7.5.
7-9
Appendix E
7.5.1. The commercial preparation of gluconic acid and its derivatives
Calcium gluconate is mass-produced by the neutralisation of gluconic acid with
calcium carbonate. For the production of calcium gluconate, it is easiest to first produce
gluconic acid and then neutralise with calcium carbonate (Green, 1980; Theander, 1980;
Hustede et al., 1988).
There are several ways to produce gluconic acid commercially. All have to do with
the oxidation of glucose (dextrose) or glucose solutions to gluconic acid. Chemical and
electrochemical oxidation has been used in industry before, but is costly and has relative
low yields.
Gluconic acid cannot be prepared through photochemical oxidation.
The
preferred method for the production of gluconic acid is through biochemical oxidation
(Green, 1980; Theander, 1980; Hustede et al., 1988).
The catalytic oxidation of glucose is being used in industry more readily in recent
years. Glucose solutions of concentration of 1-2 mol/ℓ is oxidised with oxygen or air while
the solution’s pH is kept between 8 and 11 (preferably 9-10) with the continuous addition of
an alkaline (calcium carbonate) solution. Normally highly purified glucose solutions should
be used.
The catalysts are platinum-group metals suspended on activated charcoal or
aluminium oxide.
The effectiveness of the catalysts can be improved by doping the
platinum-group metals with lead, selenium, thallium or bismuth, with the preferred carrier
being activated charcoal.
Typical operation temperatures are 50°C.
Catalyst activity,
selectivity, lifetime and cost are the most important economical aspects (Green, 1980;
Theander, 1980; Hustede et al., 1988).
Chemical oxidation of D-glucose to D-gluconic acid with halogens (and especially
chlorine) is known since the second half of the 19th century. Yields are relatively low but can
be dramatically increased (up to ~ 96%) with the addition of a solid buffer. The gluconic
acid is usually isolated as its calcium salt (Green, 1980).
The principal organisms employed for the biochemical oxidation are Aspergillus
niger and Gluconobacter suboxydans, with the Aspergillus niger process being used most
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix E
7-10
regularly. For example, typical production parameters for the fermentative synthesis of
sodium gluconate with Aspergillus niger are (Hustede et al., 1988):
Typical substrate formulation: 250-300 g/ℓ glucose, 0.2-0.3 g/ℓ MgSO4.7H2O,
0.2-0.3 g/ℓ KH2PO4 and 0.4-0.5 g/ℓ (NH4)2HPO4 or urea. The substrate must be
sterilised. Sterilisation may be done either in batches at 110°C with a residence time of
45 min or continuously under conditions providing several minutes exposure to a
temperature of 135-150°C. In the fermentation vessel, the pH is adjusted to 4.5-5.0 and
inoculated with the cultured micro-organism.
During the production phase, the
temperature is maintained at 30-32°C and pH at 5.5-6.5 through continuous
neutralisation.
The optimum pH for the process is near 5.6.
A 30-50% sodium
hydroxide solution is used for the neutralisation. Fermentation continues for a period
of 40-100 h, depending on the starting concentration. To ensure yields above 80%, an
adequate oxygen supply (0.1 ℓ oxygen per ℓ solution per minute) must be maintained.
Gas distribution within the fermentor must be optimised. The partial pressure of
oxygen may be increased by using oxygen-enriched air or operating the fermentor at
elevated pressures.
The cultured medium contains only about 100 g/ℓ glucose, but as much as twice
the mentioned amounts of nutrient salts, an increased amount of nitrogen compounds
and a 0.2-0.4 g/ℓ corn steep powder (a growth-stimulating additive). A lyophilized
permanent culture is used to grow the conidia. The culture is first activated with a
specific growth medium in culture tubes. After the production of several subcultures,
the organism is introduced into a special medium that encourages the formation of
conidia. The conidia are harvested after a 5-10 days incubation period and used to
inoculate the preculture.
For the production of calcium gluconate, calcium carbonate may be used for
neutralisation instead of sodium hydroxide. The micro-organisms are removed by
filtration after fermentation. The product may be decolourised with activated carbon
and then either evaporated or crystallised or spray dried.
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix F
7.6.
Appendix F
7.6.1. Vitamin supplement label
7-11
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix G
7.7.
7-12
Appendix G
7.7.1. Pictures of the burn test setup
Front view of the setup
Flame nozzle
Rear view of the setup (no thermocouples)
Gas bottle and rotameter
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix H
7.8.
Appendix H
7.8.1. Screen grab of the data logging software, “Capture”.
7-13
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix I
7.9.
7-14
Appendix I
7.9.1. Photos of the cold finger used for the sublimation crystallisation
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix J
7.10. Appendix J
7.10.1. Elemental analysis of the leached SiO2 from Foskor Pty. Ltd.
7-15
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix K
7.11. Appendix K
7.11.1. Preparation of CaDex (Venter, 2000)
7-16
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix K
7-17
12
A6
2
B1
2
B2
1
B3
1
B4
3
B5
5
12
3
5
6
4
3
40
Height change
21
2
0
56
26
14
22
1
10
37
52.804 14.524 76.176 17.440 2.479 7.867 17.216 39.801 48.969 11.992
14
% carbon left
7
0.058 0.090 0.099 0.012 0.006 0.004 0.021 0.028 0.029 0.008
27
Mass left (carbon)
17
0.052 0.530 0.031 0.058 0.234 0.046 0.099 0.042 0.031 0.062
38
Mass left (Na2CO3)
61
0.023 0.230 0.013 0.025 0.102 0.020 0.043 0.018 0.013 0.027
12
Mass left (Na)
17
0.110 0.620 0.130 0.070 0.240 0.050 0.120 0.070 0.060 0.070
41
Mass left (total)
Height char
8.970 9.500 9.100 7.280 9.210 7.100 7.360 7.220 7.130 6.950
After
12
Total mass
15
0.023 0.230 0.013 0.025 0.102 0.020 0.043 0.018 0.013 0.027
20
Mass Na in
Height powder
0.200 0.670 0.200 0.120 0.340 0.100 0.150 0.160 0.100 0.100
1
A5
Sample mass
1
A4
8.860 8.880 8.970 7.210 8.970 7.050 7.240 7.150 7.070 6.880
2
A3
Tube mass
1
A2
11.261 34.313 6.718 20.892 29.863 19.984 28.730 11.425 13.283 26.725
Before
No
% Na in product
Acid H
Synthesis
mm
%
g
g
g
g
mm
g
g
mm
g
g
%
mole
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix L
the synthesis and pyrolysis of the sodium salts
7-18
7.12. Appendix L
7.12.1. Tabulated results for the pyrolysis of the sodium compounds and
47
4
5
6
7
29
8
9
10
43.381
1.472
0.014
0.028
0.639
3.058
Product
Out
Mass Na2CO3
Mole Na2CO3
Mole Na
Mass Na
Mass expected
Mass obtained
121.990
17.120
Percentage yield
% Na in product
3.730
29.440
Mass Na2CO3 (sol)
2.020
Mass acid
0.014
0.014
Mole Na2CO3
Mole acid
1.470
Mass Na2CO3
In
1
Acid H
2.00
0.014
Calculated
144.22
16.289
120.421
3.570
2.965
0.582
0.025
0.013
1.341
26.810
0.013
2.020
0.013
1.340
1
0.013
2.00
158.23
2.730
2.302
0.856
0.037
0.019
1.973
39.450
0.022
1.010
0.018
1.957
1
0.018
0.85
46.03
2.120
1.851
0.522
0.023
0.011
1.203
24.060
0.011
1.000
0.011
1.203
1
0.011
1.00
88.11
2.00
2.00
2
3
0.016 0.016 0.010
2.000 2.000 2.010
0.016 0.016 0.010
1.681 1.681 1.009
2
0.016 0.016 0.010
2.00
0.012
2.020
0.012
1.231
1
0.012
2.00
4.710
3.345
0.821
0.036
0.018
1.892
1.970 2.050 2.390
2.699 2.698 2.426
0.730 0.730 0.438
0.032 0.032 0.019
0.016 0.016 0.010
1.683 1.682 1.009
3.540
2.887
0.534
0.023
0.012
1.231
37.830 33.650 33.640 20.180 24.620
0.018
2.010
0.018
1.891
1
0.018
2.00
112.09 126.07 126.07 210.14 172.27
2.910
2.757
0.459
0.020
0.010
1.059
21.170
0.010
2.010
0.010
1.058
1
0.010
2.00
18.067
31.344
24.617
17.422 37.050 35.594 18.315 15.085
15.780
%
%
g
g
g
mole
mole
g
g
mole
g
mole
g
mole
mole
g
200.32 g/mol
108.596 118.592 114.531 140.791 73.003 75.982 98.527 122.604 105.537
3.220
2.965
0.582
0.025
0.013
1.341
26.820
0.013
2.020
0.013
1.340
1
0.013
2.00
158.24
Appendix L
22.782
98.363
3.100
3.152
0.706
0.031
0.015
1.628
32.560
0.015
2.000
0.015
1.628
1
0.015
2.00
130.19
105.99
3
Mw
2
Na2CO3 Octanoic n-Heptanoic Pelargonic Nonanoic Formic i-Butyric 2-Furoic Oxalic Oxalic Citric Decanoic Lauric
1
Acid
No
Mole acid
Mass acid
Synthesis
University of Pretoria – Labuschagne, FJWJ (2003)
7-19
15
16
17
0.929
0.009
0.018
0.403
2.666
Product
Out
Mass Na2CO3
Mole Na2CO3
Mole Na
Mass Na
Mass expected
Mass obtained
0.010
2.010
0.010
1.009
2
0.010
0.009
1.960
0.010
1.009
2
0.010
2.00
2.594
2.371
0.429
0.019
0.009
0.990
15.153 18.238 16.557
19.311
112.816
3.500
3.102
0.676
0.029
0.015
1.558
31.160
0.015
2.000
0.015
1.557
1
0.015
2.00
136.14
0.014
2.010
0.014
1.451
2
0.014
2.00
0.012
2.000
0.012
1.261
3
0.012
2.00
3.400
2.607
0.629
0.027
0.014
1.450
3.220
2.524
0.547
0.024
0.012
1.262
19.010 18.501 16.996
20
21
22
2.820
3.070
0.656
0.029
0.014
1.513
30.260
0.014
2.000
0.014
1.513
1
0.014
2.00
140.10
23.275
21.270
124.690
3.350
2.687
0.713
0.031
0.015
1.643
32.850
0.016
2.010
0.015
1.642
3
0.015
2.00
129.08
19.103
114.046
2.900
2.543
0.554
0.024
0.012
1.277
25.540
0.012
2.020
0.012
1.276
2
0.012
2.00
166.13
32.867
94.386
2.690
2.850
0.884
0.038
0.019
2.038
40.760
0.019
2.010
0.019
2.037
2
0.019
2.00
104.07
Coumaric i-Cyanuric i-Phthalic Malonic
19
106.219 130.422 127.596 91.848
3.180
2.994
0.605
0.026
0.013
1.394
27.870 29.000 25.230
0.013
2.010
0.013
1.393
1
0.013
2.00
152.15 146.14 168.11
Uric
18
%
%
g
g
g
mole
mole
g
g
mole
g
mole
g
mole
mole
g
g/mol
Appendix L
12.176
13.000
2.400
2.426
0.438
0.019
0.010
1.009
% Na in product
2.890
2.426
0.438
0.019
0.010
1.010
20.190 20.180 5.940
0.010
2.010
0.010
1.009
3
0.010
2.00
116.277 113.300 119.115 98.939 109.383
2.950
2.604
0.359
0.016
0.008
0.828
16.560
0.008
2.020
0.008
0.827
1
0.008
2.00
210.14 210.14 210.14
Percentage yield
3.100
18.580
2.010
Mass acid
Mass Na2CO3 (sol)
0.009
Mole Na2CO3
0.009
0.928
Mass Na2CO3
Mole acid
1
Acid H
In
0.009
2.00
256.43
2.00
61
Calculated
14
228.38
13
Mw
12
Myristic Palmitic Trimesic Mucic Mucic Phenylacetic Anisic Adipic
11
Acid
No
Mole acid
Mass acid
Synthesis
University of Pretoria – Labuschagne, FJWJ (2003)
7-20
0.007
2.020
Mole Na2CO3
Mass acid
0.011
2.000
0.011
1.126
2
0.011
2.00
0.007
0.014
0.324
2.546
Product
Out
Mole Na2CO3
Mole Na
Mass Na
Mass expected
Mass obtained
27
28
30
31
26.506
21.646
111.797
2.910
2.603
0.630
0.027
0.014
1.452
29.040
0.014
2.000
0.014
1.451
2
0.014
2.00
146.10
2.880
2.478
0.499
0.022
0.011
1.151
23.020
0.011
2.000
0.011
1.151
2
0.011
2.00
184.20
20.467
17.338
113.155 116.244
3.650
3.226
0.747
0.032
0.016
1.722
34.440
0.016
2.010
0.016
1.722
1
0.016
2.00
123.11
27.853
109.712
2.200
2.005
0.613
0.027
0.013
1.413
28.250
0.013
1.010
0.013
1.412
1
0.013
1.00
75.07
33
34
35
17.353
137.984
3.580
2.595
0.621
0.027
0.014
1.432
28.640
0.014
2.000
0.014
1.431
2
0.014
2.00
148.12
17.748
102.078
2.910
2.851
0.516
0.022
0.011
1.191
23.810
0.011
2.010
0.011
1.189
1
0.011
2.00
178.23
3.350
3.209
0.741
0.032
0.016
1.709
34.170
0.016
2.000
0.016
1.708
1
0.016
2.00
124.10
22.751
22.125
115.339 104.404
4.050
3.511
0.921
0.040
0.020
2.124
42.480
0.020
2.010
0.020
2.117
1
0.020
2.00
100.12
Phthalic
Pyrazine
Butyl benzoic Tiglic
Anhydride
carboxylic
32
%
%
g
g
g
mole
mole
g
g
mole
g
mole
g
mole
mole
g
g/mol
Appendix L
18.369
12.031 19.090
2.590
2.657
0.687
0.030
0.015
1.583
% Na in product
3.970
2.707
0.729
0.032
0.016
1.681
31.650
0.015
2.000
0.015
1.581
2
0.015
2.00
134.09
105.665 103.752 146.630 97.465
2.560
2.467
0.489
0.021
0.011
1.127
33.620
0.016
2.020
0.016
1.681
3
0.016
2.00
126.11
Percentage yield
2.690
0.746
14.920 22.530
Mass Na2CO3
Mass Na2CO3 (sol)
0.007
0.745
Mass Na2CO3
In
1
2.00
Acid H
Calculated
0.007
Mole acid
26
284.48 188.22
25
Mw
24
Stearic Azeloic Pyrogallic Malic Keto Glutaric Picolinic Barbitone Glycocoll
23
Acid
No
Mole acid
Mass acid
Synthesis
University of Pretoria – Labuschagne, FJWJ (2003)
7-21
39
40
41
1.049
0.010
0.020
0.455
2.436
Product
Out
Mass Na2CO3
Mole Na2CO3
Mole Na
Mass Na
Mass expected
Mass obtained
97.716
19.121
Percentage yield
% Na in product
2.380
20.980
Mass Na2CO3 (sol)
2.000
Mass acid
0.010
0.010
Mole Na2CO3
Mole acid
1.048
Mass Na2CO3
In
2
Acid H
2.00
0.010
Calculated
3.200
2.763
0.793
0.034
0.017
1.828
36.550
0.017
2.010
0.017
1.826
2
0.017
2.00
116.07
19.376
24.775
104.215 115.799
3.120
2.994
0.605
0.026
0.013
1.394
27.870
0.013
2.010
0.013
1.393
1
0.013
2.00
152.15
13.617
113.040
2.990
2.645
0.407
0.018
0.009
0.939
18.770
0.009
2.258
0.009
0.938
4
0.009
2.25
254.16
3.310
2.994
0.605
0.026
0.013
1.394
27.880
0.013
2.010
0.013
1.393
1
0.013
2.00
152.15
21.668
18.270
109.146 110.543
2.830
2.593
0.613
0.027
0.013
1.414
28.270
0.013
2.010
0.013
1.412
2
0.013
2.00
150.09
43
44
45
46
48
17.138
93.160
2.530
2.716
0.434
0.019
0.009
1.000
19.990
0.009
2.010
0.009
0.999
1
0.009
2.00
212.20
0.018
2.010
0.018
1.890
1
0.018
2.00
4.510
2.745
0.779
0.034
0.017
1.795
4.030
3.346
0.821
0.036
0.018
1.892
35.900 37.830
0.017
2.000
0.017
1.795
2
0.017
2.00
118.09 112.13
3.600
3.292
0.792
0.034
0.017
1.826
36.520
0.017
2.000
0.017
1.826
1
0.017
2.00
116.11
29.133
17.266 20.361
22.004
89.647 164.327 120.457 109.362
2.390
2.666
0.696
0.030
0.015
1.605
32.100
0.015
2.000
0.015
1.605
2
0.015
2.00
132.11
DiaminoGalacturonic Glutaric Succinic Sorbic Levulinic
benzoic
42
%
%
g
g
g
mole
mole
g
g
mole
g
mole
g
mole
mole
g
g/mol
Appendix L
21.728
94.436
2.350
2.488
0.511
0.022
0.011
1.177
23.540
0.011
2.000
0.011
1.177
2
0.011
2.00
180.16
202.24
38
Mw
37
Sebacic Homophthalic Mandelic Maleic Pyromellitic Tartaric
36
Acid
No
Mole acid
Mass acid
Synthesis
University of Pretoria – Labuschagne, FJWJ (2003)
7-22
1.320
0.017
36.790
1.840
0.017
0.035
0.798
2.621
2.990
0.008
16.220
0.811
0.008
0.015
0.352
2.070
2.240
Product
Out
Mole acid
Mass Na2CO3 (sol)
Mass Na2CO3
Mole Na2CO3
Mole Na
Mass Na
Mass expected
Mass obtained
12.661
15.706
% Na in product
15.429
115.170
3.270
2.839
0.505
0.022
0.011
1.163
23.260
0.011
2.020
22.377
107.532
3.540
3.292
0.792
0.034
0.017
1.826
36.520
0.017
2.000
0.017
23.749
108.116
3.720
3.441
0.883
0.038
0.019
2.037
40.730
0.019
2.000
0.019
2.040
1.839
0.522
0.023
0.011
1.204
24.080
0.011
0.980
0.011
18.031
25.604
121.078 110.926
3.070
2.536
0.554
0.024
0.012
1.276
25.520
0.012
2.010
0.012
1.203
2.666
0.691
0.030
0.015
1.593
31.860
0.015
2.010
0.015
1.593
2.756
2.800
0.490
0.021
0.011
1.130
0.011
2.000
0.011
1.127
1
0.011
2.00
21.835 17.787
106.843 98.418
3.449
3.228
0.753
0.033
0.016
1.736
0.016
2.000
0.016
1.736
1
0.016
2.00
%
%
g
g
g
mole
mole
g
g
mole
g
mole
g
mole
mole
g
Appendix L
26.689
154.472
108.231 114.069
3.800
2.460
0.481
0.021
0.010
1.109
22.180
0.010
2.000
Percentage yield
1.706
0.111
0.005
0.002
0.256
5.120
0.002
1.600
0.011
1.276
2
0.015
2.00
122.12 188.12 g/mol
1.495
In
0.010
2.036
1
0.011
1.00
133.10
Mass acid
0.002
1.825
2
0.012
2.00
88.11
0.017
1.163
1
0.019
2.00
166.13
0.008
1.109
1
0.017
2.00
104.11
Mole Na2CO3
0.257
1
0.011
2.00
116.16
1.840
3
0.010
2.00
182.26
0.810
12
0.002
1.60
191.14
Mass Na2CO3
Mass acid
660.04
1
60
1
59
Acid H
58
0.017
57
0.008
56
Mole acid
55
1.32
54
1.50
53
Calculated
52
76.05
51
196.16
50
Mw
49
Gluconic Glycollic Phytic Nit.triacetic Undecylenic Hexanoic Ethoxy acetic Phthalic n-Butyric Aspartic Benzoic Gallic
No
Acid
Synthesis
University of Pretoria – Labuschagne, FJWJ (2003)
7-23
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix L
No
Acid
Bubbled
Dissolved
Colour
State
Other
1
2
3
47
4
5
6
7
29
8
9
10
11
12
13
14
61
15
16
17
18
19
20
21
22
23
24
25
26
27
28
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
48
49
Pure Na2CO3
Octanoic
n-Heptanoic
Pelargonic
Nonanoic
Formic
i-Butyric
2-Furoic
Oxalic
Oxalic
Citric
Decanoic
Lauric
Myristic
Palmitic
Trimesic
Mucic
Mucic
Phenylacetic
Anisic
Adipic
Uric
Coumaric
i-Cyanuric
i-Phthalic
Malonic
Stearic
Azeloic
Pyrogallic
Malic
2-Ketoglutaric
Picolinic
Barbitone
Glycocoll
Phthalic Anhy
Butyl benzoic
Tiglic
Pyr.carboxylic
Sebacic
Homophthalic
Mandelic
Maleic
Pyromellitic
Tartaric
Diam.benzoic
Galacturonic
Glutaric
Succinic
Sorbic
Levulinic
Gluconic
Yes
Yes
Little
Little
Yes
Yes
Yes
Yes
Yes
Yes
Little
No
Little
Little
Yes
Yes
Yes
Yes
Yes
Yes
Little
Yes
Little
Yes
Yes
Little
Yes
No
Yes
Yes
Yes
Little
No
Slow
Little
Little
Yes
Slow
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Little
Little
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Little
No
Little
Little
Yes
Yes
Yes
Yes
Yes
Yes
Little
Yes
Little
Yes
Yes
Little
Yes
Yes
Yes
Yes
Yes
Slow
Yes
Slow
Slow
Slow
Yes
Slow
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
White
White
White
White
White
White
White
Yellow
White
White
Cream
White
White
White
White
White
White
White
White
White
White
White
Brown
White
White
White
White
White
Black
Cream
Cream
White
White
White
Cream
White
White
White
White
Cream
White
White
Yellow
White
Black
Brown
Cream
White
Yellow
White
Brown
Powder
Pieces
Pieces
Pieces
Pieces
Crystals
Crystals
Crystals
Crystals
Crystals
Pieces
Pieces
Wax
Wax
Wax
Crystals
Powder
Powder
Crystals
Crystals
Pieces
Pieces
Pieces
Powder
Crystals
Crystals
Wax
Powder
Pieces
Pieces
Powder
Pieces
Powder
Pieces
Crystals
Crystals
Crystals
Crystals
Powder
Powder
Powder
Crystals
Powder
Crystals
Crystals
Pieces
Pieces
Crystals
Wax
Wax
Pieces
Gelled
Gelled
Add water
Gelled
Gelled, Add water
Add water
Add water
Add water
Gelled
-
7-24
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix L
No
Acid
Bubbled
Dissolved
Colour
State
Other
50
51
52
53
54
55
56
57
58
59
60
Glycollic
Phytic
Nit.triacetic
Undecylenic
n-Hexanoic
Ethoxy acetic
Phthalic
n-Butyric
Aspartic
Benzoic
Gallic
Yes
Little
Yes
Little
Little
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Slow
Yes
Yes
Yes
Yes
Slow
Yes
Yes
White
White
Cream
Cream
White
White
White
White
White
Crystals
Pieces
Wax
Wax
Crystals
Crystals
Powder
Crystals
Pieces
-
7-25
0.108
5
0.019
9.044
2
0.059
0.019
0.130
4
0.056
9.100
4
0.130
0.056
0.130
0.000
0.000
0
Effective mass
Height powder
Mass Na in
Total mass
Height char
Mass left (total)
Mass left (Na)
Mass left (Na2CO3)
Mass left (carbon)
% carbon left
Height change
After
-3
27.624
0.016
0.043
0.132
0.130
Before
Sample mass
Tube mass
2
3
47
4
5
6
7
29
8
9
10
-2
-3.221
-0.002
0.060
0.026
0.058
2
9.306
0.026
4
0.114
0.114
9.248
-3
30.956
0.022
0.048
0.021
0.070
3
8.886
0.021
6
0.129
0.155
8.816
-5
14.912
0.010
0.054
0.024
0.064
1
8.916
0.024
6
0.131
0.142
8.852
7
21.117
0.040
0.150
0.065
0.190
14
9.148
0.065
7
0.207
0.246
8.958
-8
6.571
0.005
0.065
0.028
0.070
1
9.024
0.028
9
0.115
0.132
8.954
5
2
6
6
0.026 0.032 0.003
0.182 0.176 0.036
0.079 0.076 0.016
0.208 0.208 0.039
5
9.132 9.000 8.953
0.079 0.076 0.016
5
0.213 0.214 0.085
0.213 0.214 0.085
8.924 8.792 8.914
-9
0
1
4
45.742 12.541 15.584 7.987
0.084
0.100
0.043
0.184
1
9.025
0.043
10
0.249
0.350
8.841
-4
19.638
0.008
0.034
0.015
0.042
1
8.583
0.015
5
0.097
0.119
8.541
-6
9.858
0.005
0.047
0.020
0.052
1
8.896
0.020
7
0.129
0.136
8.844
Na2CO3 Octanoic n-Heptanoic Pelargonic Nonanoic Formic i-Butyric 2-Furoic Oxalic Oxalic Citric Decanoic Lauric
1
8.985
Acid
No
8.970
Pyrolysis
mm
%
g
g
g
g
mm
g
g
mm
g
g
g
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix L
7-26
0.038
0.013
0.029
0.009
24.038
-6
Mass left (Na)
Mass left (Na2CO3)
Mass left (carbon)
% carbon left
Height change
8.645
Total mass
Mass left (total)
0.013
Mass Na in
1
7
Height powder
Height char
0.096
8.607
Effective mass
After
12
13
14
61
15
16
17
-8
19.193
0.008
0.034
0.015
0.042
1
8.938
0.015
9
0.121
0.137
8.896
0.062
12
0.376
0.411
0.018
0.064
0.028
0.082
6
0.061
0.143
0.062
0.204
14
8.803 11.247
0.028
6
0.153
0.153
8.721 11.043
3
0
2
50.147 21.556 29.705
0.045
0.045
0.019
0.090
8
8.870
0.019
5
0.128
0.153
8.780
-6
10.462
0.005
0.047
0.020
0.052
1
8.682
0.020
7
0.105
0.118
8.630
0.036
0.036
0.016
0.072
1
8.893
0.016
4
0.084
0.110
8.821
0.034
0.049
0.021
0.083
10
9.212
0.021
8
0.126
0.161
9.129
Uric
18
-4
-3
2
18.472 50.043 40.442
0.008
0.034
0.015
0.042
2
8.988
0.015
6
0.078
0.083
8.946
Myristic Palmitic Trimesic Mucic Mucic Phenylacetic Anisic Adipic
11
0.112
Before
Acid
No
Sample mass
Tube mass
Pyrolysis
20
21
22
1
24.620
0.030
0.091
0.040
0.121
6
9.326
0.040
5
0.170
0.170
9.205
2
49.856
0.054
0.055
0.024
0.109
9
9.285
0.024
7
0.111
0.139
9.176
0
55.773
0.061
0.049
0.021
0.110
6
8.915
0.021
6
0.110
0.126
8.805
-3
3.938
0.008
0.201
0.087
0.209
4
9.359
0.087
7
0.265
0.265
9.150
Coumaric i-Cyanuric i-Phthalic Malonic
19
mm
%
g
g
g
g
mm
g
g
mm
g
g
g
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix L
7-27
0.033
0.009
Mass left (Na2CO3)
Mass left (carbon)
Height change
0.027
0.066
0.029
0.093
1
9.100
0.029
7
0.150
0.156
9.007
-8
-6
22.513 28.856
0.014
Mass left (Na)
% carbon left
0.042
9.141
Total mass
Mass left (total)
0.014
Mass Na in
1
9
Height powder
Height char
0.117
9.099
Effective mass
After
24
25
26
27
28
30
31
3
59.283
0.059
0.041
0.018
0.100
8
9.020
0.018
5
0.096
0.141
8.920
11
10.699
0.011
0.093
0.040
0.104
16
9.127
0.040
5
0.152
0.152
9.023
2
28.382
0.024
0.062
0.027
0.086
7
8.531
0.027
5
0.123
0.138
8.445
-7
31.744
0.039
0.085
0.037
0.124
1
9.220
0.037
8
0.179
0.203
9.096
0
17.105
0.015
0.075
0.032
0.090
7
9.266
0.032
7
0.187
0.217
9.176
2
16.970
0.020
0.097
0.042
0.117
8
9.415
0.042
6
0.151
0.166
9.298
Stearic Azeloic Pyrogallic Malic Keto Glutaric Picolinic Barbitone Glycocoll
23
0.124
Before
Acid
No
Sample mass
Tube mass
Pyrolysis
33
34
23
61.411
0.095
0.059
0.026
0.154
32
9.007
0.026
9
0.149
0.205
8.853
-14
55.312
0.063
0.050
0.022
0.113
1
8.844
0.022
15
0.123
0.126
8.731
-7
15.905
0.015
0.078
0.034
0.093
1
8.997
0.034
8
0.149
0.172
8.904
Phthalic
Butyl benzoic Tiglic
Anhydride
32
31
24.888
0.023
0.070
0.030
0.093
38
9.116
0.030
7
0.137
0.143
9.023
Pyrazine
carboxylic
35
mm
%
g
g
g
g
mm
g
g
mm
g
g
g
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix L
7-28
0.109
0.037
0.084
0.025
22.767
-6
Mass left (Na)
Mass left (Na2CO3)
Mass left (carbon)
% carbon left
Height change
9.389
Total mass
Mass left (total)
0.037
Mass Na in
1
7
Height powder
Height char
0.191
9.280
Effective mass
After
37
38
39
40
41
-4
41.121
0.054
0.077
0.033
0.131
1
9.242
0.033
5
0.154
0.154
9.111
-2
7.390
0.006
0.081
0.035
0.087
7
8.982
0.035
9
0.180
0.188
8.895
12
26.656
0.031
0.086
0.037
0.117
20
9.308
0.037
8
0.150
0.174
9.191
1
51.539
0.055
0.051
0.022
0.106
9
9.252
0.022
8
0.164
0.185
9.146
4
11.502
0.014
0.107
0.046
0.121
9
9.175
0.046
5
0.214
0.234
9.054
Sebatic Homophthalic Mandelic Maleic Pyromellitic Tartaric
36
0.191
Before
Acid
No
Sample mass
Tube mass
Pyrolysis
43
44
45
46
48
4
43.250
0.042
0.054
0.024
0.096
10
9.258
0.024
6
0.129
0.143
9.162
-5
18.793
0.020
0.088
0.038
0.108
2
9.163
0.038
7
0.222
0.222
9.055
-5
3.625
0.005
0.126
0.055
0.131
1
9.139
0.055
6
0.188
0.188
9.008
0.032
0.092
0.040
0.124
10
9.038
0.040
10
0.195
0.235
8.914
0.022
0.094
0.041
0.116
2
8.793
0.041
9
0.186
0.203
8.677
0
0
-7
41.740 26.156 18.835
0.046
0.065
0.028
0.111
9
9.061
0.028
9
0.162
0.267
8.950
Diamino
Galacturonic Glutaric Succinic Sorbic Levulinic
benzoic
42
mm
%
g
g
g
g
mm
g
g
mm
g
g
g
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix L
7-29
0.064
0.018
0.042
0.022
34.664
0
Mass left (Na)
Mass left (Na2CO3)
Mass left (carbon)
% carbon left
Height change
9.257
Total mass
Mass left (total)
0.018
Mass Na in
6
6
Height powder
Height char
0.115
9.193
Effective mass
After
50
51
52
53
54
55
56
57
58
59
60
1
11.816
0.016
0.121
0.052
0.137
9
9.220
0.052
8
0.196
0.224
9.083
3
69.824
0.101
0.043
0.019
0.144
10
9.444
0.019
7
0.149
0.230
9.300
-6
29.261
0.025
0.061
0.026
0.086
1
9.136
0.026
7
0.171
0.197
9.050
31
11.048
0.011
0.092
0.040
0.103
41
8.870
0.040
10
0.178
0.191
8.767
20
5.749
0.006
0.095
0.041
0.101
28
9.119
0.041
8
0.174
0.188
9.018
22
59.133
0.075
0.051
0.022
0.126
27
8.711
0.022
5
0.124
0.150
8.585
-5
17.023
0.014
0.070
0.030
0.084
2
9.265
0.030
7
0.118
0.131
9.181
0.039
6
0.221
0.221
0.040
0.091
0.039
0.131
52
-7
46
36.983 30.830
0.057
0.097
0.042
0.154
0
10.478 10.567
0.042
7
0.193
0.206
10.324 10.436
Gluconic Glycollic Phytic Nit.triacetic Undecylenic n-Hexanoic Ethoxy acetic Phthalic n-Butyric Aspartic Benzoic Gallic
49
0.125
Before
Acid
No
Sample mass
Tube mass
Pyrolysis
mm
%
g
g
g
g
mm
g
g
mm
g
g
g
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix L
7-30
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
7-31
7.13. Appendix M
7.13.1. Summarised results for the gluconate synthesis.
Tabulated results of the standardisation of the synthesised gluconates
Metal
Al
Na
Sb
Zn
Zr
Ca*
Cu*
Fe*
Mg*
Theoretical ratio
metal to gluconate
1:3
1:1
1:3
1:2
1:2#
1:2
1:2
1:2
1:2
Calculated%
metal in gluconate
9.10
8.52
22.13
13.06
29.97
6.57
13.42
9.44
4.13
Calculated ratio metal
to gluconate (inc. water)
1:1.38
1:1.27
1:2.20
1:2.22
1:1.09
1:2.92
1:2.10
1:2.74
1:2.22
* commercial material
#
basic Zr salt (ZrO2-)
7.13.2. Thermal analysis of pentaerythritol, the acetylacetonates and
acetylacetonate/pentaerythritol mixtures.
All DCS/TGA scans were done at a scan rate of 10°C from room temperature to
1000°C in air, unless indicated otherwise.
0
7.0
-10
6.0
TG
5.0
DSC
Mass loss (%)
-30
4.0
-40
3.0
-50
2.0
-60
1.0
-70
0.0
-80
-90
-1.0
-100
-2.0
-110
-3.0
50
100
150
200
250
300
350
400
450
Temperature (°C)
DSC/TGA scan of Pentaerythritol
500
550
600
650
DSC response (mW/mg)
-20
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
TG
-10
7-32
1.0
DSC
-20
Mass loss (%)
-30
-40
0.0
-50
-60
-0.5
-70
-80
DSC response (mW/mg)
0.5
-1.0
-90
-100
-110
-1.5
100
150
200
250
300
350
400
450
500
550
600
650
Temperature (°C)
DSC/TGA scan of Al acetylacetonate
0
TG
-10
1.5
DSC
0.5
Mass loss (%)
-30
0.0
-40
-50
-0.5
-60
-1.0
-70
-1.5
-80
-2.0
-90
-2.5
-100
-110
-3.0
100
150
200
250
300
350
400
450
500
550
600
Temperature (°C)
DSC/TGA scan of Al acetylacetonate/pentaerythritol mixture
650
DSC response (mW/mg)
1.0
-20
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
TG
7-33
1.0
DSC
-10
-20
0.0
Mass loss (%)
-30
-0.5
-40
-1.0
-50
-1.5
-60
-2.0
-70
DSC response (mW/mg)
0.5
-2.5
-80
-3.0
-90
-100
-3.5
100
150
200
250
300
350
400
450
500
550
600
650
Temperature (°C)
DSC/TGA scan of Al acetylacetonate/fumaric acid mixture
TG
1.0
DSC
-10
0.5
-20
0.0
-30
-0.5
-40
-1.0
-50
-1.5
-60
-2.0
-70
-2.5
-80
-3.0
-90
-3.5
-100
-4.0
100
150
200
250
300
350
400
450
500
Temperature (°C)
DSC/TGA scan of Al acetylacetonate/tartaric acid mixture
550
600
DSC response (mW/mg)
Mass loss (%)
0
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
TG
DSC
60.0
-10
50.0
-20
40.0
-30
30.0
-40
20.0
-50
10.0
-60
0.0
-70
100
150
200
250
300
350
400
450
500
550
600
DSC response (mW/mg)
Mass loss (%)
0
7-34
-10.0
650
Temperature (°C)
DSC/TGA scan of Ca acetylacetonate
0
TG
DSC
25.0
-10
Mass loss (%)
-30
15.0
-40
10.0
-50
-60
5.0
-70
0.0
-80
-90
100
150
200
250
300
350
400
450
500
550
600
Temperature (°C)
DSC/TGA scan of Ca acetylacetonate/pentaerythritol mixture
-5.0
650
DSC response (mW/mg)
20.0
-20
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
TG
DSC
-10
7-35
4.0
2.0
0.0
Mass loss (%)
-30
-40
-2.0
-50
-4.0
-60
-70
-6.0
DSC response (mW/mg)
-20
-80
-8.0
-90
-100
100
150
200
250
300
350
400
450
500
550
600
-10.0
650
Temperature (°C)
DSC/TGA scan of Cu acetylacetonate
TG
DSC
-10
40.0
-20
35.0
30.0
-30
Mass loss (%)
45.0
25.0
-40
20.0
-50
15.0
-60
10.0
-70
5.0
-80
0.0
-90
-5.0
-100
100
150
200
250
300
350
400
450
500
Temperature (°C)
DSC/TGA scan of Cu acetylacetonate/pentaerythritol mixture
-10.0
550
DSC response (mW/mg)
0
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
TG
DSC
7-36
25.0
-10
Mass loss (%)
-30
15.0
-40
10.0
-50
-60
5.0
DSC response (mW/mg)
20.0
-20
-70
0.0
-80
-90
100
150
200
250
300
350
400
-5.0
500
450
Temperature (°C)
DSC/TGA scan of Fe acetylacetonate
0
TG
8.0
DSC
-10
Mass loss (%)
-30
4.0
-40
-50
2.0
-60
0.0
-70
-80
-2.0
-90
-100
-4.0
100
150
200
250
300
350
400
450
500
Temperature (°C)
DSC/TGA scan of Fe acetylacetonate/pentaerythritol mixture
550
DSC response (mW/mg)
6.0
-20
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
TG
DSC
-10
7-37
12.0
10.0
8.0
Mass loss (%)
-30
6.0
-40
-50
4.0
-60
2.0
-70
0.0
DSC response (mW/mg)
-20
-80
-2.0
-90
-100
50
100
150
200
250
300
350
400
450
500
550
-4.0
600
Temperature (°C)
DSC/TGA scan of Mg acetylacetonate
0
TG
3.0
DSC
-10
2.0
1.0
Mass loss (%)
-30
-40
0.0
-50
-1.0
-60
-70
-2.0
-80
-3.0
-90
-100
-4.0
50
100
150
200
250
300
350
400
450
500
550
Temperature (°C)
DSC/TGA scan of Mg acetylacetonate/pentaerythritol mixture
600
DSC response (mW/mg)
-20
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
TG
DSC
7-38
20.0
-10
Mass loss (%)
-30
10.0
-40
5.0
-50
-60
DSC response (mW/mg)
15.0
-20
0.0
-70
-80
50
100
150
200
250
300
350
400
450
500
550
-5.0
600
Temperature (°C)
DSC/TGA scan of Na acetylacetonate
0
TG
DSC
-10
10.0
-20
6.0
Mass loss (%)
-30
-40
4.0
-50
2.0
-60
0.0
-70
-2.0
-80
-90
50
100
150
200
250
300
350
400
450
500
550
Temperature (°C)
DSC/TGA scan of Na acetylacetonate/pentaerythritol mixture
-4.0
600
DSC response (mW/mg)
8.0
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
7-39
3.0
TG
DSC
2.0
-10
Mass loss (%)
0.0
-30
-1.0
-2.0
-40
-3.0
-50
-4.0
-60
DSC response (mW/mg)
1.0
-20
-5.0
-70
-6.0
-80
50
100
150
200
250
300
350
400
450
500
-7.0
550
Temperature (°C)
DSC/TGA scan of Ti acetylacetonate
0
TG
DSC
-10
30.0
-20
20.0
Mass loss (%)
-30
-40
15.0
-50
10.0
-60
5.0
-70
0.0
-80
-90
50
100
150
200
250
300
350
400
450
500
Temperature (°C)
DSC/TGA scan of Ti acetylacetonate/pentaerythritol mixture
-5.0
550
DSC response (mW/mg)
25.0
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
7-40
2.0
0
TG
DSC
-10
Mass loss (%)
-30
0.0
-40
-50
-1.0
-60
-2.0
-70
-80
DSC response (mW/mg)
1.0
-20
-3.0
-90
-100
150
200
250
300
350
400
450
-4.0
550
500
Temperature (°C)
DSC/TGA scan of V acetylacetonate
0
4.0
TG
-10
DSC
3.0
-20
Mass loss (%)
-30
1.0
-40
0.0
-50
-1.0
-60
-2.0
-70
-3.0
-80
-90
-4.0
-100
-5.0
100
150
200
250
300
350
400
450
500
Temperature (°C)
DSC/TGA of V acetylacetonate/pentaerythritol mixture
550
600
DSC responce (mW/mg)
2.0
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
10.0
TG
DSC
-10
6.0
-30
4.0
-40
2.0
-50
0.0
-60
DSC response (mW/mg)
8.0
-20
Mass loss (%)
7-41
-2.0
-70
-80
100
150
200
250
300
350
400
450
-4.0
550
500
Temperature (°C)
DSC/TGA scan of Zr acetylacetonate
0
TG
3.0
DSC
2.0
-10
0.0
Mass loss (%)
-30
-1.0
-40
-2.0
-50
-3.0
-60
-4.0
-70
-5.0
-80
-6.0
-90
-7.0
100
150
200
250
300
350
400
450
500
Temperature (°C)
DSC/TGA scan of Zr acetylacetonate/pentaerythritol mixture
550
DSC response (mW/mg)
1.0
-20
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
7-42
7.13.3. Thermal analysis of the gluconates.
0
TG
DSC
-10
12.0
10.0
8.0
Mass loss (%)
-30
6.0
-40
-50
4.0
-60
2.0
-70
0.0
DSC response (mW/mg)
-20
-80
-2.0
-90
-100
0
100
200
300
400
500
600
700
-4.0
900
800
Temperature (°C)
DSC/TGA scan of NH4 gluconate
TG
DSC
2.5
-10
2.0
-20
1.5
-30
1.0
-40
0.5
-50
0.0
-60
-0.5
-70
-1.0
-80
-1.5
-90
-2.0
50
150
250
350
450
550
650
Temperature (°C)
DSC/TGA scan of Al gluconate
750
850
DSC response (mW/mg)
Mass loss (%)
0
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
TG
DSC
7-43
20.0
-10
-20
Mass loss (%)
-30
-40
10.0
-50
-60
5.0
-70
-80
DSC response (mW/mg)
15.0
0.0
-90
-100
0
100
200
300
400
500
600
700
-5.0
900
800
Temperature (°C)
DSC/TGA scan of Ca gluconate
0
TG
7.0
DSC
-10
6.0
5.0
Mass loss (%)
-30
-40
4.0
-50
3.0
-60
-70
2.0
-80
1.0
-90
-100
0.0
0
100
200
300
400
500
600
Temperature (°C)
DSC/TGA scan of Cu gluconate
700
800
900
DSC response (mW/mg)
-20
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
10.0
DSC
-10
9.0
-20
8.0
-30
7.0
-40
6.0
-50
5.0
-60
4.0
-70
3.0
-80
2.0
-90
1.0
-100
0
100
200
300
400
500
600
700
DSC response (mW/mg)
TG
Mass loss (%)
7-44
0.0
900
800
Temperature (°C)
DSC/TGA scan of Fe gluconate
0
20.0
TG
DSC
-10
-20
Mass loss (%)
-30
-40
10.0
-50
-60
5.0
-70
-80
0.0
-90
-100
0
100
200
300
400
Temperature (°C)
DSC/TGA scan of Mg gluconate
500
-5.0
600
DSC response (mW/mg)
15.0
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
40.0
TG
DSC
-10
30.0
-30
25.0
-40
20.0
-50
15.0
-60
10.0
-70
DSC response (mW/mg)
35.0
-20
Mass loss (%)
7-45
5.0
-80
0.0
-90
-100
0
100
200
300
400
500
-5.0
700
600
Temperature (°C)
DSC/TGA scan of Na gluconate
0
10.0
TG
DSC
-10
Mass loss (%)
-30
6.0
-40
-50
4.0
-60
2.0
-70
-80
0.0
-90
-100
0
100
200
300
400
500
Temperature (°C)
DSC/TGA scan of Sb gluconate
600
-2.0
700
DSC response (mW/mg)
8.0
-20
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix M
0
7-46
20.0
TG
DSC
-10
Mass loss (%)
-30
10.0
-40
-50
5.0
-60
0.0
-70
-80
DSC response (mW/mg)
15.0
-20
-5.0
-90
-100
0
100
200
300
400
500
-10.0
700
600
Temperature (°C)
DSC/TGA scan of Zn gluconate
3.0
0
TG
DSC
2.0
Mass loss (%)
-20
1.5
1.0
-30
0.5
-40
0.0
-50
-0.5
-60
-1.0
0
100
200
300
400
500
600
Temperature (°C)
DSC/TGA scan of Zr gluconate
700
800
900
DSC response (mW/mg)
2.5
-10
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7-47
7.14. Appendix N
7.14.1. SEM images of calcium gluconate monohydrate powder
(crystals).
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7.14.2. SEM images of ammonium gluconate hydrate (crystals).
7.14.3. SEM images of the plate like leached SiO2
7-48
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7-49
7.14.4. SEM images of calcium gluconate pyrolysed in air at selected
temperatures
Calcium gluconate pyrolysed in air at 200 °C
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Calcium gluconate pyrolysed in air at 300 °C
7-50
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Calcium gluconate pyrolysed in air at 400 °C
7-51
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Calcium gluconate pyrolysed in air at 500 °C
7-52
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Calcium gluconate pyrolysed in air at 600 °C
7-53
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Calcium gluconate pyrolysed in air at 700 °C
7-54
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Calcium gluconate pyrolysed in air at 800 °C
7-55
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Calcium gluconate pyrolysed in air at 1000 °C
7-56
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7-57
7.14.5. SEM images of calcium gluconate monohydrate pyrolysed in
nitrogen at selected temperatures
Calcium gluconate pyrolysed in nitrogen at 200 °C
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Calcium gluconate pyrolysed in nitrogen at 300 °C
7-58
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Calcium gluconate pyrolysed in nitrogen at 400 °C
7-59
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7-60
Wall thickness of calcium gluconate heated at 300°C
100.00 nm
1.00 µm
50.00 nm
50.00 nm
100.00 nm
70.00 nm
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7-61
7.14.6. SEM images of calcium gluconate monohydrate and leached
silica mixtures pyrolysed in air
4:1 mole ratio (gluconate: silica) heated at 400°C
4:1 mole ratio (gluconate: silica) heated at 600°C
4:1 mole ratio (gluconate: silica) heated at 1000°C
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
2:1 mole ratio (gluconate: silica) heated at 600°C
1:1 mass ratio (gluconate: silica) heated at 600°C
7-62
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7-63
7.14.7. SEM images of ammonium gluconate hydrate pyrolysed in air at
selected temperatures
Ammonium gluconate pyrolysed in air at 300 °C
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Ammonium gluconate pyrolysed in air at 400 °C
7-64
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7-65
7.14.8. SEM images of ammonium gluconate hydrate pyrolysed in
nitrogen at selected temperatures
Ammonium gluconate pyrolysed in nitrogen at 300 °C
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
Ammonium gluconate pyrolysed in nitrogen at 400 °C
7-66
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7-67
Wall thickness of ammonium gluconate heated at 300°C
1.00 µm
400.00 nm
1.00 µm
20.00 µm
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7.14.9. SEM images of AP750 pyrolysed in air at 400 °C
7-68
University of Pretoria – Labuschagne, FJWJ (2003)
Appendix N
7.14.10.
SEM images of PEN pyrolysed in air at 400 °C
7-69
Fly UP