...

B. Sc subsdiary of Duration

by user

on
Category: Documents
1

views

Report

Comments

Transcript

B. Sc subsdiary of Duration
B. Sc subsdiary lle-.thematics
Seheme
of Exami-nation
Duration
Paper I -
Analytic Geometry.
C.alcuJ-us
' |
Paper If -
algebra Trjghometry, matricesl Vectors & Ilifferentia.l
0
Max.I,iarks
3hrs
80
3 hrs
L2O
Equaticns
To
te
I
zDir
Srrb s ir1
i ery I'Iet L-'r:c-u
fron
a1
!!i5
FlIisT l.llvi
,1rrrr-l'rtic
G:onatll/
a:c1
TIrc pe.ir-'r isclivicl.:r-i
lrll].1 I
-TuI
t
.t-I
llnii IlI
--
c
s
3
;:i-1r'ut'-s
- ff f * ct i':'':
i:rc1'nil'llio::
l- i'-i'
j -
Cilc$h;1
T
;.
ir:to i Ur:i'"s e-c t1:tc'i1er'r'
i;igregcbe
Mefj-ra:s-t
i{nrks
I{flr-ks
.)
.C
aa
a.,,".iyti" Geonetr;r
!rfi,:::eutlol C nlcultts
o-)
15
Intei3r:oJ Cr-Icu1us
1c
20
l1c
B0
-
I
e-i
aI
Du::r.tion of Jxi.::iiLtr.tic,tr I Ers
liietlu 3-ticsr
bY !;.S' ScstrY trro1' 2f &]t'n'
a's it:1-:ltlg t:eeriLlg
j,ld:,,tic lbLn:-'try - !r'eetn3ut
(Sec. 2 .1 .1-)
1. Pdl-5ftr Co-ordinotes
2. :louatiou lcr c litre il)
Polr':r l-io-orlliuntes
in' stl'-c:
',,. B-ecten6u]3r' Ce-orclinetcs
4. Cylinclriccl Polcg Co-orciiurtto
Spr-rerical Folr':-' C o-c'rllili'tes
\.
Colric. S'lc\ti'or:s
1. lrmBla.tiou
8. .jque'tior: of
9.
-
Stru:c1c'rcl f o::nc
ofrbc':s
Conj'c
iu Polo' Co-orrii;rr'r:3
S1:her,.', CY11t:c1el o:c1 Cot:e
'1C. Qreiric Suifi'ces
,.r,s/zc-g
-
t'llrs'
:
iildf!-r
. i.
6.
l:e1o'li:
(Sec.2;t.4)
(Sec
.2.1.5.)
(Sec.2.t.6")
(Sec.2.1.7.)
('*itliout Proof)
1sec.z.z.i.)
(sic.2.2.4.)
(S,-:c.2
.2.5.)
(S..c .2
.i .8.)
(Sec 'z
.1.9:)
I
-2-
3r:ii:r-l Ca1o.:luc
. 1. Ei*rnr Derivatives ar:cr.
4,
5.
Concevity a:cl poir:ts
Tqylcn,s
,6r-.r
: e;: it: g'3' sastr/)
n.o
(sec.i.3.4
of ir,f1, xior:
,\
(see-J.1.6)
Mncl,:*.=ir:e,s sr.-,.-:: ,^,
(st^tenert
or:Iy), rkpar:sior: or
rrr"rr]:;.."
encr
(sec.1.1.7)
5. curvntu:
:e (cru.tesier: or:IJ)
G'ec .1.1.8)
7 - :lsJnptot,'s
B. Fur:ctious of se,,.,;_a.,,1
$*.j.3.g)
voriabir.r -e\rt.J.aaer:teJ,
i-cl.:cs, ltrit a:c1
.
cor:ti::uity
.
_
s"_^ 1. 5.e.1.
5.1.2)
9. pi,e.tiar_ c1:_f1,._.rcr11i..tior:
(Sec.5.z, 5.2.1.,
5.2.2.
10. Differu.r:tial_s
(sec.5.7),
ullrr - rrr
1,
r-ntroductior:
2.
Itrune-r:icai.
3.
tfc.ductibu form:1ru,.
?,J:d.5-2.4)
.r.artlriup
+(*+.,i'a€uli
(s;'c
InteEr_a] CiJculus
(?r'ec.tneut as
il g.g. SmtrV)
'5
'l'
zl
6F
.
ir:tegretior:
I)
tlr's
(Sec.4 .1.
)
(s,-.c.{.1 .J)
.
(5.2c.4.2.4)
(sec.4.1.1)
5. 'Areas ir: polir.r Co_orclir:ates
5.' Iefir:ition eurl ..va1,latior:
o_f
F-e+tticg Books ,
i) Ii.ff:-1ru1dti.a1 Calcufus
(s.tc.4.1.2)
(se'c.4.1.5)
c_t
cui-.le
iDtetrals
'lrrr
C
sJ:" ).
(sec. 6.1.1)
-ualacl:rUclra i_tao
C,K. Slier:flre
ru:c1
(wif-,y c.last_,::u i,irl \
ii) ?he 41",q..r:ts
of Co_orc1ile.t.:: G,.cElrt].y,
by: S.l, ' iJOt)ey
iii) Celculus
by : j.Ie.n-lca,rrclle6.o=
iu) /u:oJ.ytical G-:ou..tr.y
?iLLoi
by : I,Iru:icavrc1:ejon
?i]l+i
kns/zo+
15.2.3
;
-- rr-rLi3matics PaPer If
ts' Sc' Subsi-l.La:"ii Ii"Lr
year
II
of
Slrllabus
Dl-I'u-tr3 rds )
(Bffective from L99 6 r:-li'-ii ssicr:
fer
Diffenti-ai
anrJ' Dif
iiecLors and
^'a^' -rion+'orrs
"-r
Mattiicr:s
Alge!:ra, Cc-'rnplex 'l'durnbers'
3 i::it::t
The Paper is afviae'd intc
Maximunt
t{aPks
Ag{lregate
Marks
UNIT
- f Algebra,
45
75
ComPIex Numberr:
Equationsr
and l*{atri-ces
30
c.n
Vectors
INIT -If
--.1
fefential Equations
: rinrT.ri-.LT-.rT
uN'r-r'.--.--:-j:'Dif
-ina
foririer seri-es
Total
75
=ry=
')l
t
j'ci':
.,
3 hcurs'
Durati on of
anC i'ia+;i;:-ces
rnmrrl ex |'iurnoers
lTumbers crtr'f,
"' '
-L-^ Complex
. UNTT - I Algebra'
z\J.gebra (10 hours)
!-r r-anrrnti&i
E><aminat
'
and. Logarithniie
SurrrriationofseriesbasedorrBlncinia-]-,*:"::.,"'andLogar
I 'ent1 Loqaritnr-iic ssries'
Binornj'
using
so-rics, Appro>--Lmat'icn
''c"*pl-"x
Nr:rnbers
(to rrouis)
(proof. us-Lnq Eulcr's formulae)
ttreorem
De Moj-vre's
'
Numbet"t
Hxtratiori of rcots of comprex E>rpgrnsi'l'11^il:=:::"l",t"::"#-:':=J:',o::i
oi 5l-n o'
lnteger''
+ve
a
of o' Hyoerbclic
tan no-n being
ccsj-n''::r ':f rlr:Itiples
and
sines
of
cogBe in;'.a series
rea] an<-l l''l^,.'rfii p'i'tii}r parts'
into
ft'nctiotls,'.separation
,
'l,1aLrj-cies
o'Lecurs
(
)
=
AdJolnt and'.inverse of matrj-ce':s'')nlh{)gon
Eormaticns' c-')rtl' is:enc
. .lMatr-i:<, E]-ementar-v traheforma::::l:',.,.'
en va1ues anct Elgen
ntn"lr;";"=:r:;;'
()f
;iirie+-rix'
r'j'c
equa'ulcn
equatlorls' characteri
...1;16;Q!of€zst.atementofCaylev.Hamif-.-ci-l.s':l:eoremandsinrpl-eapolicat.ion
(40 hor:r='-,=:
Vector Analysi's
Lt{iT - II Vectors
'' Davis -' Ini r-nrirrl-.i i cn to
F'
' Treatment as i n Harry
i
of
of l/ectDr--q' pfoduct
-'r:c;crrod.ucts
and
A qu-i-ck revlew of Scal-ar
^c 4- 5iY1g1e va::iabler
i'r;-rl:i : :f:ilnctl-on or
vectLrs'
arrd
4 vectors and Reclprocal
:n4'LAnfi"r.t's' accel-alzntj-cn
r'--i 1--- r'I
':i'rl
6.i-r:l:6'.. --nniAi'jr1n-
s1-)a'Ce C'rllv€S;
la
^2.-
Scalar ancl Vector f ielcls
:
_
Scalar lie1c1, level. surf ar: ': , qradlents- C.- :pter 3 ( Sec. 3, 1,)
Diver:gence (sec; 3;4), curl (sec" 3.5,) o;re::atordSec. 3.6) veetor
rdentities ( sec. 3. 9 ) v'ector -i-nt,:qr-.rtion, line integrals (see . 4.L)
.
LINIT
fTf Differential
Text Books:
1. ,AdvanceC
EquaiL.)ns and Fourier Serj.es
(60 hours)
Enq-:i,=,,-rr-i-nq
Z. Eng-i-neei'ir:li
}4athematics by- Erwin Kreyszig
l': ,, -.hcma.'-ics r/ol_ume f
f by-.
S"
S. Sastry
E
Eqrrations reducib-l-e to sctJ;irr:.r.rl3 fcm exact differentj_al eguationsl--'
equation, Bernou-l-li's cnu.-tl::ns. (sec. 1.4, 1.5, 1.8 of Kreysziq)
lli;rear
for 1st
i:quati-,:ns laylcr's series Method,
Picard's l,!.ethod, Eu1er's Methcd Lirn,7r, Kutta. I'.{cthoC (+ttr Order OnIy)
Chapter 1"3 (sec 1.3.1., I.3.2, 1.a.3,. 1.3.1 of S.S. Sastry)
l-rTumbrieal Methorls
'
ordr.e.,:
Zttd=Orxldr -v1i ff erenci_a.l_ equati.),. G
1 . 4, 4 of S. S. Sastrl' )
Chapter 1. zi
(
Sec. 7.4.1 , L..4. 2
and
Laplace's Transf crmation ( Sec" I.o !, 2.7.1-, 2. L. 2; 2. I.3 , 2.1,. 4 , 2.-2.1 ,
2.2.2, 2..2.3t, 2.3.1 orc S" S. Sa.:iirr,)
Fourier Sertes - Fourier Coefiic-'rents wi_thout deri-.rat j-on ( Sec. 3. l-,
3,1.1, 3,i,.t, 3,2 ci S.5o Sa,=c;,".)
.
\"
tri29r/tt
.-
t
,(r
(
: ), Seminar i
Fr.lsi-nt-, tj-cn
'
3
1 merk
1 mark
1 mark
Ccnt-nt
ittt'
Lntcr act-ion
- L.
'
To te
mar}ls
l-
(4 ) Assi.-,nme nt.
3
marks
3
marl<s
r/ut.e ot submj_ssion
1 m:rlr
t-n t
Pr e scnt.-tion
.1 merk
1 m.rk
Tota
3
r.- !^
Ccn
1
!., .s c., - !,t rl
il
_-E
!t,,J_r!r-s
l
q
_U_B
s
_r
l,_I
_Et!_l-rl.g,L
Feper f
m-rrl<s
f.$y]
.Jp.t.er-n-al- jll.:f:.=l:
15
25
65
Ir
80,;
\20
:.
Fcr F !F,*Jr I ti-r,- r-i.: i-,r-:k Lilr of 15 marks for
Int,rir.l
shtll l] r :,.-rr (ti,:r E.Sc- M.rLnem;, tics l,iain).
FC,- f-.,; er: 2, Li,- br..:rli u1: cf 25 marks i.s giv,-n below:
(
I ) i.-.terrciang:-
5 mark-q
3 marks
4 marks
5 merks
ii.t,:;e-n 6a% ;nC -ilr
il.gtr.:u--n
31i.l
'r
._:irC !ill;,
B-L',.7e!n 9C.,i. ;nc'i
._,.-
|'
".,.
(z) l5! Fe'p=r (2
1\'OS.I : ;5
Fcr ecch test ba tr.,,t -n )57.
Be.tr.,reen
.>
Betvuee n
eAi'"
.B+
10 marks
e:nc 5n'%
O;2, .rnU
anc)
tive;n !tl%:od
6e%
C f\ot
1007;
2 marks
3 morks
4 merlcs
5 m.rks
3)
it
it
rl
i.
ifil
:;i
: il,
?
5
l-) 9:lrl-u:
I_'1.-St_p
l_.rti;.tj
Content
t n terec tio;l
Tota
4
l-
) ;.ssi-onr,itlL
liate of suDnrission
rna
ri<s
- 2 nrerlts
2 rnarks
1
rnarl<
5 rnarks
- 5 marks
- .1- marl<
2 mark
2 merk
5 marks
-r,t'E/5
/
\.
Fly UP