...

III {kq Time:3las. fte<

by user

on
Category: Documents
1

views

Report

Comments

Transcript

III {kq Time:3las. fte<
B.Sc. PART
III
Annual Examination 20II
Snbject: physics
Paper: I
Solid Stste pbysics & Statistical Mechanics
Time:3las.
\ole : AoeDF
Moc Mar*s:33
Ifin. pN %l()
fivequesLiors rn al setectiDs one queston
&om
ecl mir
I]NITI
Q
(6%)
I (a) Defhe Crystat lattie, basis a4d crysr4l
srru.ture. Des.ribe
briefly th€ sae! sysrem ofc.ystsG.
fte<
qnrc,
iftq ;fu Esd daftr 6i
ri&ct qq fr,sd
fq.6rc
6r
{kq
qdq
qRqR_d
dfrct
2
the lafice consl4l 'a' i3
O) Show ftar for a cubic laitice,
ilr
"":r!!t
[N.P]
wi* n is the number of aioms pd uoil ell, M^ is the
is ihe
atomic weiSlt. N^ is Ava9dros number md 'P'
donsitY of crystal
6atdial.
q6 q{r6tt q66 + frC rrflg
qri6 tc{dr6
(a)
=
b-
LM.lll]
[NF]
raq { q{.n'Jql d {@I, M^qrcFJ
cI{ N^, ,srEFna {sI (w ?, fr'gd * qald 6I
qti r, {ad
02 (a)
Co'ordinalioo !umb* ? Obtain 1he co odinatio'
nmber fd body coned cubic (bcc) ianice'
wlat
is
esiTrdl
*
Giq
dal aI *A t? <rA iEJ Eirrr s66
{s-ri{Qfl
{qr qE dftql
(b) Derive Bmgg s law for
x-M * EI{dr *
x{av diftaclion'
Rg i{ e hqq A
{'{t
dfrsl
I]NIItr
covaldl tvpe ofbinding What do vou
Dd.Bt nd by binding mergt of. crystal ?
iirqFf '+{ {E{qtdr riq{ 6t ctdql$in' dFist ffi
ff,sd * Erq{ 6qf t 'xlq @I s{sa l?
Q3 (a) Deiine lonic and
3
(b) Whjch O?e ofbindiug exisr itr
folowhg :
{ tu{ 16r{ * iq
frEftfun
Nacl, Csc], r1, Ci,, Fe
crA Ern
*-
dd sradne
Q4 (a) wlla1 do you udeBrand by mer.Uic bond
?
chmclajstis of netrlic crystals_
rrafud iq
sllq rcr rq*A t?
t
€E .Bkdrq&llE
*
ffi"r6 hEd
?
Catcular rle lani.!
qere/
ionic crysbt.
nEift hq-di6 qqr
qrdf6 Errf
ilfl
*? frls ftqF-r F6sd
qi ,r!r;li d&gl
UMTIII
Q5.
some
a-drEst
(b) wlat is M.duling coDsi.nl
ofa
cive
Dhcus
r.le
d
$\)
vibdiotr ofotre dinensionat diaromic tilear
C6 hEq EirqrqFd
iqq fioo d
asrqt
*
qcf
dfqqr
06. Disci.. r
Leiarion otspecit. hed. card.
rryo.r,,trd
wirh leDperatue and give Eihstien theory
ro explaiD it.
Bifl .ts d Elirq Bqr qfdr d drq + qlq cQ.{di
Ei Ecf afts !t{ E+ crcri + FIg rira*_&i _r
turda 4Gcr
r.NTrrv
Q7.
Q.)
what is meanl by Femi tevel in a netal ? HN does it
vary wirh iempemture in meral ? Show diagranatiqfly
wher. the Femi level exisl in merat.
{ E{ 6-{ t ar (T*a g? F6e qr{ { {6
arq + qrq *A qfrltfd +dr *? E-d ri nsl{fl A
s$irq h qr{ { s{ R. 6-di *fl l?
Bi{i sr{
Q8.
What is Hall Effoct ? Give e etmentry theory ofHall
Etlecr. Vtrrion rhe importanr 6e. otHatrFtlecr.
aQ 61 9rfiq .F{ Etdr l? rrd rqtiI 6r CR&r-6 fu<i(
{dr{qt srd rqrs + qa€qd
6r qntr d&ql
( Irv
Q9.
Compee the following staristics :
FrqRtud
a)
b)
c)
Qlo-
.ctr
€ekfti {
Ar.rr dE]!-
M-B Sbdstics
B,E Statisti6
F-D St tistiG
W.ire shon noies on
dy
two ofthe following :
a) [email protected] ofoualtu Stathtics
b) [email protected]
c) Ek crton enerA/ disribution
frq { i Fid A r. {Bq Fatq!ft FlfuCai"q defuf, a5r scqiq
oftqqflc
i+f,
{+q< aqf kflq
6y,)
B.Sc. PART
III
Annual ExamiDation 2011
Subject: Physics
paper : II
Strrlial Theory ofRelativity and Quantum Theory
Time : 3 Hrs.
Ma. Marls : 13
Mir. Pass "/o 40
nve qu6tioI! seleting one from @ch
T]NIT
Qt.
T
Derive the expression for expecbd fringe shift in
Michelson-Morley experi ent. Fiud the value of frioge
snift for effective length of 6 m for each path and meaD
paveleDsth of lighl !s 600 m
Gpeed of ealh in its palh
7+2
2
What explanations were Siven for negative resdrs of
Q2 (a) StatinE poslulares of special
ttre Lorentz
fieo.y of reladvity, doive
Ttusfomation equ
io.s.
5
!,erdtage conlracrion of a rod moving
0.8c in a [email protected] incliftd at 300 to irs
UMT
II
for rcladvisdc addilion of velociii$.
Show thar this fomnla proves one of 0E postulates of
zv,+L%
special theory of relativity.
Q3 (a) Obtain formula
(b) Two parlicles move towards each other with Yelolilies
05( md.75c el"ti\e
Find their apprcach
Q4.
ro a
[email protected]
zY,
Derive the expresion for change of ma$ of an obiect
ftoving with ftlativistt. velocity. Calculate the sPeed
of
a
body with whic! its nass
ils resl
mass.
wil beome
three times
4Y212
UNIT
Q5,
lcbodloo ftmeoirelftnce
Itr
Wlat is Compton effed ? Derive the expression fo. the
Compton shift. Define Compbn waveletrgth of an
electotr. Explain why ConPbn shift is no! obcrved
I'l+3+1+1
3
OO
'"r
Shor rar ro, mans wavs. g, oup
veroo ry is rlwas
b prnicle roe,ry *, u ,o *o
ree
V"e. vhJe {
;
equa.
equar !o phae veto.,ry
in
ie$ u dispeEive
med,a.
(b) Using uncertainty
pdncipte, show rhat
free
car lot be present in
lucteus
4
2y.
IN\iITIV
Q7
set u! rime in<lependmt
schrcedingq wave equation
for Datrer *aves and dedve
time
equarion form.
luncuo.
dependent
Gve sraUsri.at interperauon
ot qave
3+2+1,,4
Q8.
State
.ll1 piove Enrenfqtt dleor€m.
UNT'I/
qo
Sor\e Sctucd,r8tr qave
equauon tor
, bo\ Shov .ubical bor ,eads
lo rle
,
DanctF rn
deeer
eraly o,
4+2t,
Q,0a)W-ne down sctuednse qave
equauon lor H)droSrn
aroh,n \phej i- a I potd.oord,[email protected]
Septoar:r in.orlfe
rrepelder,-qu.ioh usne
the merhod ot (epdanon
or vtuiJbles
O)Wrire
rhe
solutiob for @h above
equation
coEesponding
qudtuo
nuubers.
aDd
exprain
2t4
B.Sc. PART
Ro[ No.,.....-................
III
Annual Exrmination20ll
subje$ : Physics
Time:
I
HB.
(rifid)
Paper: III
Electronics (Ed€tRd)
Mq. Mdks:i4
.
Min. ?.ss
o/o
40
Note : Attempt live quesrions in all selectiq oae question from
+r: {d qiq crrr 6r+ tl
qF-qI{
tr
UNIT I
Ql-
E{ cEs
Ctlg
+ s6 crn 6aifl
1
What is PN Jmcrion ? Dcsc.ihe Zener diode and
characle.isliccuNe
i1s
er t? +{z
Ta 6r anir dfrcl
Q.\'n. {i&
Q2.
<r+g .+{ sFd q&defir6
Dn$ dreciruitdiagtur'andcxp ainrhe\oikin-qotah.lf
*ave diodc rcdificr Exliain ripple lolraee a.d riplte
faclor. Describe relations lor avense and rms [email protected]
of
outPutcunent.
iMl
6r qiqq .3itu-d dftc ncr
tf*r i5l?i qlrcrcCr $A'dr #n atn s$t6r .l.116 6r
nld {dEqr fi+d irRr A eiEd a qd qrq Td Fr qr{
tsd airl cr+c
adriq
I
IJNIT II EIEg 2
03
Givc$ccircuirdiaenmedexpl.,nlhe$orkingolapol.r
supply.
cliqq-3rTiE
(X.
iii
Eq
eqrdt
necurmtgainforco,mron-basc rd.omon eniter
conllguradon inaransisror Establisharelarionbexaeen
Dcfi
iih€{ + 6dF€3nqr{
Erir-dlE
Qj.
lrk {la{Iq A,6id
*
q FdFE F€+5 hql€} + frq
'rFqsr ABqt r{4 ri{q qlfud AjiSt
UNITIIIEIEE 3
Amplifie.? Dmw rhe cncuitdiaSran ofCE
(Common Emitte.) amptinr and discu$ the important
WhaL is an
characlerisli.s
radr an *? cE rsd6 (4n{{ \fu.{) 6r qtrqq
.sTl€
dfi\ +, .-{o} T*
T,,i +1 Er+{{
dfic;
Q6.
-Ihe
voxage gain of an amplifier is
icedbocl
200 Ifa nesativc
oI66a ,..oolied cdllrldre
c6 rsd6
*
$H6
the vol'age Sain
#6 +i 6I tIEl 2oo il *qrFFF
+i 6I
cr,t d d #6 .i qrq &
fuq
;inEi
qr{ nrd dfrql
UMT TV EIlg 4
Q7.
Q8
Discu$ Banchausen Critsion ror sustained o$illations.
qla ffi + frq aRd+{ d 6*A qi
dksl
DraN dre cncun diagrarn ofHaftlei osciUaor and
Erte
afui
6r cftqq i{Rq dEis
Er+qfl
e\phi'r
!s{ qsd 6l{aft
ql s{ar{ql
UNITVGI!-g 5
Q9a
Wdle doM the truth table ofa NAND gate.
T< fu 6r
h
< kd lafugl
Explain how NOR gate is formed. Give its logic symbol
{{
+z
*d
arrdr
*? EF6r <q
}{q
{dEqr
1
Qloa. what is a digiral circuit, a logic gate, trurh r.ble and
[email protected]
qpNion
d.aw (tte logic symbol€
ofo& AND,
andNmeae.
+dqr + Rq o&
TdEgt Efu.d
b.
Staie
AND,
fi
NoT tu
sHz ar *? (q$gql
dd proved D€-lvlorgm s theom.
&-{Fir c+c -} frq deqgl
a rft. k<
Fly UP